

PayString Protocol
December 9, 2020
Aanchal Malhotra, Austin King, David Schwartz, Michael Zochowski
info+dev@PayString.org

mailto:info+dev@payid.org

Contents

Abstract 3

Introduction 4

PayString protocol design principles 6
Simplicity 7
Neutrality: currency and network agnostic 7
Decentralized & peer-to-peer 7
Extensibility and improved user experience 7
Service sovereignty 7
Composable with existing standards and namespaces 8

PayString URI scheme and PayString discovery 8

PayString protocol - A protocol for human-readable payment addresses 9
Basic PayString protocol details 10

Terminology 10
Basic PayString protocol flow: securely retrieve payment address(es) corresponding to a
PayString 10
Basic PayString protocol security model 12

Network attacks 13
Denial-of-Service (DoS) attacks 13
Information integrity 13

Basic PayString protocol privacy model 14
Access control 14
Payment address rotation 14
On the wire 15
In the PayString server 15

Verifiable PayString protocol details 16
Verifiable PayString protocol flow 18
Verifiable PayString protocol as a trustless solution for custodial and non-custodial
service providers 21

Distributing identity key 21
Verifiable PayString protocol extensions 23

Verifiable PayString protocol extension to include third party verifiable cryptographically
signed proof of payment and receipt of payment 24

1

Verifiable PayString protocol flow with compliance extensions: extends the invoice
functionality to fulfill compliance requirements such as Travel Rule in a secure and
non-repudiable way with cryptographically signed proofs of compliance fulfilment 29

Terminology 30
Verifiable PayString protocol integration with Travel Rule Information Sharing Architecture
(TRISA) 35
Verifiable PayString protocol security model 38

Fully-malicious adversary model for originating and beneficiary institutions 40
Fully compromisable originating and beneficiary wallet servers (hot systems): Adding
another layer of security 41
Security model for non-custodial PayString server wallets 42

Verifiable PayString protocol privacy model 43
Access Control 43

PayString protocol message types 43
SignatureWrapper 43
PaymentInformation 44
addresses 45
addressDetails 46
ProofOfControlSignature 46
InvoiceRequest 47
InvoiceResponse 48
ComplianceData 49
TravelRule 49
PaymentProof 50
PaymentReceipt 51
Error 51

PayString protocol status communication 52

Transport layer communication errors 53

HTTP request and response headers 54
Common headers 54
Request headers 54

ALL 55
XRP 55
ACH 55
ILP 56

Response headers 56

Protocol extensibility 56

Acknowledgements 57

2

Appendix A. PayString protocol message verification 57
Verifying InvoiceRequest message 57
Verifying InvoiceResponse message 57
Verifying ComplianceData message 57
Verifying PaymentProof message 58
Verifying PaymentReceipt message 58
Verifying Error message 58
Session establishment 58

Appendix B. Key management 58
Long-term elliptic-curve(EC) key-pair generation 59
Parameter generation 59
Short-term EC key-pair generation (Receiving Endpoint/Beneficiary Institution) 59
Short-term EC key-pair generation (Sending Endpoint/Originating Institution) 59

Cryptography choices 60

Appendix C. Additional security considerations 60
Warning on X.509 certificates 60

3

Abstract
Complicated and hard-to-remember payment addresses inherently lead to a poor user
experience resulting in confusion, errors, and potential loss of funds. This presents a major
barrier to adoption of blockchain and other payments technology. In this work we present
PayString, a standard for human-readable payment addresses that can be resolved to any
underlying payment rail, whether cryptocurrency or traditional, in a secure and private manner.
PayString protocol is designed to be general, flexible, and extensible. More specifically, we
present two extensions that layer functionality on top of ledger transactions. First, functionality
that cryptographically correlates on-ledger transactions to third party verifiable proofs of
payment and receipts of payment. Second, PayString protocol is extended to provide a
messaging standard for regulated (“covered”) institutions to exchange information to fulfil their
compliance requirements. In its various forms, PayString protocol provides strong guarantees to
transacting parties, including strong security, non-deniability by generating third party verifiable
signed cryptographic proofs, and privacy from third parties.

Introduction
Cryptocurrency addresses are usually long strings of random alphabets and integers. This leads
to substantial confusion, a myriad of errors, and potential loss of funds. To accelerate
mainstream adoption of decentralized payment networks in a user-friendly manner, it is
imperative to:

a) Create a simple, easy to remember, human-readable payment address system for
non-technical users.

b) Standardize a protocol that provides the mapping between these human-readable
addresses and the underlying rail addresses in a secure and private way.

In this work, we present ​PayString​, a human-readable payment address standard for ​all
payment rails and currencies. The PayString protocol is a simple request/response
application-layer protocol built on top of the existing standards HTTP and DNS. In its most basic
form, it provides a mapping between human-readable addresses and their corresponding
payment addresses. Despite its simplicity, PayString offers several compelling benefits. First, it
lowers the barriers to adoption of blockchain technology through an improved user experience.
Second, it provides for interoperability of namespaces across payment rails and currencies by
allowing parties to transact via any shared rail using a ​single standard address. Third, it fully
abstracts underlying payment rail details from end users, thus enabling greater accessibility and
improved management of addresses for security, privacy, or enabling complex features.

The PayString protocol is designed to be simple, flexible, secure, and fully compatible with
existing namespace systems, with a robust future roadmap for more advanced features. It can
be extended to provide secure, private, and streamlined solutions for a variety of payments,
identity and compliance use cases across both cryptocurrency and traditional finance.

4

https://github.com/payid-org/payid
https://en.wikipedia.org/wiki/Payment_rail

The most significant set of extensions under development are verifiable PayString - a suite of
security and privacy enhancements that add a variety of digital signature fields for linking
external digital identities, proving ownership of the payment rail address, and providing a
cryptographic trail of non-repudiable messages for the entire communication. It can be used to
enable trust-minimized and trust-free security regimes and has applications in both custodial
and non-custodial settings. We present two applications of verifiable PayString in this paper.

First, we show an extension to the verifiable PayString protocol that can be used to generate
invoice requests, invoice reponses, proofs of payment and receipts of payments that allows a
recipient to deploy access control mechanisms and better track transactions based on the
sender. Together with PayString protocol’s substantial improvements in user experience, this
extension enables a streamlined flow for point-of-sale, ecommerce, and other merchant
transactions that are burdensome in the current cryptocurrency paradigm.

Second, we show another extension to the verifiable PayString protocol’s invoicing functionality
that provides a simple and secure solution to meet the current and potential future compliance
requirements of cryptocurrency service providers. In particular, we present a messaging
standard for compliance with the Travel Rule, which requires certain cryptocurrency service
providers to exchange information on senders and receivers of transactions in the immediate
future. This is a particularly complex task under current cryptocurrency payments flows, where it
is challenging to determine both when the Travel Rule applies and how to securely exchange
sensitive customer information when it does apply, but verifiable PayString protocol presents a
straightforward and elegant solution to this pressing problem.

Additionally, we present a potential integration of verifiable PayString protocol with another
Travel Rule information sharing messaging proposal ​Travel Rule Information Sharing
Architecture​ (TRISA).

Ultimately, PayString is an open standard that is not limited to the applications discussed in this
paper. We anticipate PayString to continue to grow to cover additional use cases and networks,
and our goal is that PayString provides a truly universal and composable solution for all
payments.

5

https://s32708.pcdn.co/wp-content/uploads/2020/06/Travel-Rule-Info-Sharing-ArchitectureV6.pdf
https://s32708.pcdn.co/wp-content/uploads/2020/06/Travel-Rule-Info-Sharing-ArchitectureV6.pdf

PayString protocol design principles
PayString is designed to provide solutions that are broadly appealing, inclusive, and streamlined
across both the traditional finance and cryptocurrency spaces. Accordingly, we have
emphasized the following principles in the PayString design:

1. Simplicity
Rather than reinventing the wheel, PayString protocol is built on existing web standards and
infrastructure. We believe that new tools or infrastructure, particularly those involving a
blockchain integration, significantly increase overhead. We’ve designed PayString protocol so
that the barrier to adoption is minimal by building on proven tools and infrastructure. Each
institution can participate in the network by deploying or using a single web service. No node
management, no consensus; pure utility.

2. Neutrality: currency and network agnostic
Acknowledging that the cryptocurrency community must work collectively to meet the needs of
our users and their governments, we designed PayString protocol as a fundamentally neutral
protocol. PayString is capable of returning a user’s address information for any network that
they (or their service) support. This makes PayString a network and currency agnostic protocol,
capable of enabling payments in BTC, XRP, ERC-20 tokens, Lightning, ILP, or even fiat
networks like ACH.

3. Decentralized & peer-to-peer
Just like email servers, anyone can run their own PayString server or use third-party hosted
services. If self-hosted, PayString introduces no new counterparty risk or changes to a service’s
security or privacy model. Unlike some of the other approaches, PayString ​does not ​require
new, complex, and potentially unreliable peer discovery protocols, instead establishing direct
peer-to-peer connections between communicating institutions from the start.

PayString is built on the most successful decentralized network: the web. There is no
designated centralized authority, or a risk of a patchwork of different standards in different
jurisdictions that make a global solution impossibly complex.

4. Extensibility and improved user experience
PayString itself is highly extensible, and can be used in a variety of other contexts, including
improving the UX of sending and receiving to different users. PayString is designed to be an
upgradeable and open standard, with a robust roadmap of future improvements and additional
features.

6

5. Service sovereignty
Each service that uses PayString for their users maintains full control of its PayString service
and has the ability to incorporate any policy they choose, including privacy, authentication, and
security. They also have full sovereignty over users on their domain, just like in email.
PayString is highly generalized and does not prescribe any particular solution outside of the
standardized communication, which makes it compatible with existing compliance and user
management tools and philosophies.

6. Composable with existing standards and namespaces
By design, PayString is highly abstract and generalized. As a result, PayString can easily wrap
existing standards or namespaces, such as Ethereum Name Service, Unstoppable Domains, or
service-specific identifiers like ​Cashtags or Coinbase Usernames, and provide each of them far
greater reach and user value. For example, a user Bob of DigitalWallet that currently has
username @bob could be served by DigitalWallet’s PayString Server as bob$digitalwallet.com.

7

https://cash.app/help/us/en-us/3123-cashtags

PayString URI scheme and PayString discovery
We define the PayString URI as a standard identifier for payment account information. In the
same way that an email address provides an identifier for a mailbox in the email ecosystem, a
PayString can be used as an identifier to provide details about the payment addresses.
PayString is an email style identifier that separates the user and the host with a ‘$’ sign and
resolves to a URL with the HTTPS scheme.

PayString URI Syntax
PayString URI​ defines the PayString syntax as follows:

PayString: user$host

The following example URIs illustrate several variations of PayStrings and their common syntax
components:

PayString: alice$example.net
PayString: john.doe$example.net
PayString: jane-doe$example.net

The ​PayString Discovery protocol can be used to discover information about a 'PayString' URI
using standard HTTP methods. The primary use-case of this protocol is to define how to
transform a PayString URI into a URL that can be used with other protocols.

The following example illustrates an example PayString URI to URL resolution:

PayString URI: alice$example.com
PayString URL: ​https://example.com/alice

8

https://github.com/payid-org/rfcs/tree/master/dist/spec
https://github.com/payid-org/rfcs/tree/master/dist/spec
https://example.com/alice

PayString Protocol - A protocol for human-readable
payment addresses 1

The asic PayString protocol is a simple application-layer request/response protocol. The primary
use-case is to discover network-specific payment addresses along with optional metadata
identified by a PayString. These PayStrings are accessible to end users and they fully abstract
the underlying payment protocol details, allowing for a far improved user experience,
integrations between different services, and an enhanced ability of services to manage their
backend.

The protocol is based on HTTP transfer of PayString protocol messages over a secure
transport. To support PayString protocol, the PayString client needs to discover a PayString
URL corresponding to the PayString. This can be obtained either using mechanisms described
in ​PayString Discovery or could be entered manually. HTTP requests to this endpoint may
return payment addresses for different payment-networks and environments associated with a
PayString. PayString protocol’s web infrastructure — rather than a blockchain-based solution —
makes it universally usable across both cryptocurrency and traditional finance, compatible with
other namespace solutions, and universally appealing.

Basic PayString Protocol details

Terminology
This protocol can be referred to as “Basic PayString Protocol” or “PayString Protocol”. The
following terminology is used in the following section.

● Endpoint: either the client or the server of the connection.
● Sender: individual or entity originating the transaction.
● PayString client: the endpoint that initiates PayString protocol/sending side of the

transaction.
● PayString server: the endpoint that returns payment address information/receiving side

of the transaction (custodial or non-custodial wallets, exchanges, etc).
● Receiver/PayString owner: individual or entity receiving the transaction/owner of the

PayString.

Basic PayString protocol flow: securely retrieve payment address(es)
corresponding to a PayString
Basic PayString protocol can be used by PayString clients to easily query PayString servers for
payment address information corresponding to human-readable PayStrings.

1 This paper describes the v1 of PayString protocol. For details on versioning see ​here​.

9

https://github.com/payid-org/rfcs/tree/master/dist/spec
https://docs.google.com/document/d/1nIPoY3_4OCgfTUmDQeO42cF9UHMQ5LalYLbJiAyXS38/edit#

The following steps describe how the PayString client retrieves the payment address(es)
corresponding to a PayString. 2

1) HTTP GET request​: Processing steps by PayString client (typically a browser) to send

an HTTP “GET” request:

2 How a client obtains PayString is out-of-scope of this protocol. Instead of a PayString, the client can also
use its corresponding URL directly, as described in the syntax resolution section.

10

a) Establish a secure, mutually authenticated TLS 1.3 session with the PayString

server as described in the ​session establishment section. The URL of the
PayString server is derived from the PayString as described ​here​.

b) If the TLS session is successfully established, send an HTTP “GET” request over
the established secure channel. PayString client specifies the payment-network
and environment they support via the HTTP “Accept” header. They must specify
the PayString version via “PayString-version” header. For details on PayString
request headers refer to the ​HTTP Request and Response Headers​; otherwise
exit.

2) Payment Address(es) Response​: Processing steps by PayString server to generate

the Payment Address response corresponding to the queried PayString:

a) Receive the “GET” request from PayString client.
b) Query its database for the queried PayString. If the Payment Address information

corresponding to the queried PayString, payment-network and environment
exists in the database, the PayString server generates the ​PaymentInformation
response with appropriate response headers as described in the ​HTTP Request
and Response Headers section. Otherwise it generates an ​Error message. For
details on error codes refer to the ​PayString protocol status communication
section​.

c) Send PaymentInformation response or Error message to the PayString client.

11

Basic PayString protocol security model
The following is considered out-of-scope:

● Communication between the PayString owner and the wallet or exchange (which acts as
PayString server) for PayString URI registration, etc.

● Communication between the sender of the transaction and PayString client to transfer
information such as PayString URI and other transaction details, etc.

● PayString server URL discovery by PayString client. Implementations using PayString
discovery protocol MUST consider the security considerations in the corresponding
document.

● PayString server URL resolution by PayString client. Implementations using DNS,
DNSSEC, DNS-over-HTTPS, DNS-over-TLS, etc. MUST consider the security
considerations of the corresponding documents.

Network attacks
Basic PayString protocol's security model assumes the following network attackers:

● Off-path attacker: An off-path attacker can be anywhere on the network. She can inject
and spoof packets but can not observe, or tamper with the legitimate traffic between the
PayString client and the server.

● On-path attacker: An on-path attacker can eavesdrop, inject, spoof and replay packets,
but can not drop, delay or tamper with the legitimate traffic.

● In-path or Man-in-the-middle (MiTM) attacker: An MiTM is the most powerful network
attacker. An MiTM has full access to the communication path between the PayString
client and the server. She can observe, modify, delay and drop network packets.

Additionally we assume that the attacker has enough resources to mount an attack but can not
break the security guarantees provided by the cryptographic primitives of the underlying secure
transport.
The basic PayString protocol runs over HTTPS and thus relies on the security of the underlying
transport. Implementations utilizing TLS 1.3 benefit from the TLS security profile defined in ​RFC
8446​ against all the above network attackers.

Denial-of-Service (DoS) attacks
As such cryptography can not defend against DoS attacks because any attacker can
stop/interrupt the PayString protocol by:

● Dropping network packets
● Exhaustion of resources either at the network level or at PayString client and/or server.

The PayString servers are recommended to follow general best network configuration practices
to defend against such attacks as outlined in ​RFC 4732​.

12

https://tools.ietf.org/html/rfc8446
https://tools.ietf.org/html/rfc8446
https://tools.ietf.org/html/rfc4732

Implementations are recommended to apply appropriate rate-limiting and other network-access
control mechanisms to prevent flooding of requests.

Information integrity
The HTTPS connection provides transport security for the interaction between PayString client
and server but does not provide the response integrity of the data provided by PayString server.
A PayString client has no way of knowing if data provided in the payment account information
resource has been manipulated at the PayString server, either due to malicious behaviour on
the part of PayString server administrator or as a result of being compromised by an attacker.
As with any information service available on the Internet, PayString clients should be wary of the
information received from untrusted sources.

Basic PayString protocol privacy model
All application and user data stays private from passive third-parties. Our protocol ensures
application and user data privacy against third-parties by encapsulating all traffic in
HTTP-over-TLS.

a) Provides end-to-end encryption of communicating data between parties.
b) Provides mutual authentication between the communicating parties.
c) Provides perfect-forward secrecy, i.e. keys compromised in the future do not

compromise the privacy of data encrypted in the past.

The PayString client and server should be aware that placing information on the Internet means
that any one can actively access that information. While PayString protocol is an extremely
useful tool to discover payment account(s) information corresponding to a PayString URI,
PayString owners should also understand the associated privacy risks. The easy access to
payment account information via PayString protocol was a design goal of the protocol, not a
limitation.

Access control
PayString protocol MUST not be used to provide payment account(s) information corresponding
to a PayString URI unless providing that data via PayString protocol by the relevant PayString
server was explicitly authorized by the PayString owner. If the PayString owner wishes to limit
access to information, PayString servers MAY provide an interface by which PayString owners
can select which information is exposed through the PayString server interface. For example,
PayString servers MAY allow PayString owners to mark certain data as “public” and then utilize
that marking as a means of determining what information to expose via PayString protocol. The
PayString servers MAY also allow PayString owners to provide a whitelist of users who are
authorized to access the specific information. In such a case, the PayString server MUST
authenticate the PayString client.

Payment address rotation
The power of PayString protocol comes from providing a single place where others can find
payment account(s) information corresponding to a PayString URI, but PayString owners should

13

be aware of how easily payment account information that one might publish can be used in
unintended ways. As one example, one might query a PayString server only to see if a given
PayString URI is valid and if so, get the list of associated payment account information. If the
PayString server uses the same payment address each time, it becomes easy for third-party to
track one's entire payment history. The PayString server SHOULD follow the best practice of
payment address rotation for every query to mitigate this privacy concern.

On the wire
PayString protocol over HTTPS encrypts the traffic and requires mutual authentication of the
PayString client and the PayString server. This mitigates both passive surveillance (​RFC 7258​)
and the active attacks that attempt to divert PayString protocol queries to rogue servers.

Additionally, the use of the HTTPS default port 443 and the ability to mix PayString protocol
traffic with other HTTPS traffic on the same connection can deter unprivileged on-path devices
from interfering with PayString operations and make PayString traffic analysis more difficult.

In the PayString server
The Basic PayString protocol data contains no information about the PayString client; however,
various transports of PayString queries and responses do provide data that can be used to
correlate requests. A Basic PayString protocol implementation is built on IP, TCP, TLS and
HTTP. Each layer contains one or more common features that can be used to correlate queries
to the same identity.

At the IP level, the PayString client address provides obvious correlation information. This can
be mitigated by use of NAT, proxy, VPN, or simple address rotation over time. It may be
aggravated by use of a PayString server that can correlate real-time addressing information
with other identifiers, such as when PayString server and other services are operated by the
same entity.

PayString client implementations that use one TCP connection for multiple PayString requests
directly group those requests. Long-lived connections have better performance behaviours than
short-lived connections; however they group more requests, which can expose more information
to correlation and consolidation. TCP-based solutions may also seek performance through the
use of TCP Fast Open (​RFC 7413​). The cookies used in TCP Fast open may allow PayString
servers to correlate TLS connections together.

TCP-based implementations often achieve better handshake performance through the use of
some form of session resumption mechanism, such as Section 2.2 of ​RFC 8446​. Session
resumption creates a trivial mechanism for a server to correlate TLS connections together.

HTTP's feature set can also be used for identification and tracking in a number of ways. For
example, Authentication request header fields explicitly identify profiles in use, and HTTP
cookies are designed as an explicit state-tracking mechanism and are often used as an
authentication mechanism.

14

https://tools.ietf.org/html/rfc7258
https://tools.ietf.org/html/rfc7413
https://tools.ietf.org/html/rfc8446

Additionally, the “User-Agent” and “Accept-Language” request header fields often convey
specific information about the PayString client version or locale. This allows for
content-negotiation and operational work-arounds for implementation bugs. Request header
fields that control caching can expose state information about a subset of the client's history.
Mixing PayString queries with other HTTP requests on the same connection also provides an
opportunity for richer data correlation.

The PayString protocol design allows implementations to fully leverage the HTTP ecosystem,
including features that are not enumerated in this document. Utilizing the full set of HTTP
features enables PayString to be more than HTTP tunnel, but it is at the cost of opening up
implementations to the full set of privacy considerations of HTTP.

Implementations of PayString clients and servers need to consider the benefits and privacy
impacts of these features, and their deployment context, when deciding whether or not to
enable them. Implementations are advised to expose the minimal set of data needed to achieve
the desired feature set.

Determining whether or not PayString client implementation requires HTTP cookie (​RFC 6265​)
support is particularly important because HTTP cookies are the primary state tracking
mechanism in HTTP, HTTP cookies SHOULD NOT be accepted by PayString clients unless
they are explicitly required by a use case.

Overall, the PayString protocol does not introduce privacy concerns beyond those associated
with using the underlying IP, TCP, TLS and HTTP layers.

15

https://tools.ietf.org/html/rfc6265

Verifiable PayString Protocol
Verifiable PayString protocol, an extension to Basic PayString protocol, provides payment
address information associated with a PayString while allowing involved parties to exchange
“identity” information, proof of ownership of on-ledger keys, and non-repudiable cryptographic
proof of the entire exchange. It can be used to enable trust-minimized and trust-free security
regimes and has applications in both custodial and non-custodial settings. More specifically,
verifiable PayString protocol provides the following enhancements to the Basic PayString
protocol:

● Verifiable Custodial PayString service: allows custodial wallets and exchanges to send
payment address information and other resources digitally signed with their off-ledger
private key.

● Verifiable Non-Custodial PayString service: allows non-custodial wallets and exchanges
to send payment address information digitally signed with the off-ledger private key of
the PayString owner along with PayString owner's “identity” information.

● Privacy-enhanced PayString service: allows PayString service providers (both custodial
and non-custodial) to deploy appropriate access control mechanisms by allowing the
PayString clients or senders to transmit their “identity” information for authentication.

Basic PayString protocol protocol relies on the underlying secure transport (TLS 1.3) to ensure
message integrity and privacy from network attackers. There are at least two assumptions in the
security and privacy model of the basic PayString protocol that are less desirable.

1. Trust requirement between the PayString client and PayString server: As pointed out in
the ​Basic PayString security model section, PayString server has full control over the
contents of the response message, and may go rogue or be compromised. The
PayString client has no way of knowing if the PayString server behaves maliciously. This
implicit trust assumption between the PayString client and server is not ideal in the world
where the information provided by the PayString server may be used by the PayString
client to transmit money.

2. Privacy: Per Basic PayString protocol, anyone can query the PayString server and
retrieve the payment address information corresponding to the queried PayString. The
PayString server or PayString owner has no way of deploying access control
mechanisms since the
“identity” of the PayString client and the sender is unknown to the PayString server.

 The motivation for verifiable PayString protocol is the following:

1. Eliminate the implicit trust assumption between the PayString client and custodial
PayString server: While it is not possible for any protocol to prevent custodial PayString
server or PayString client from acting maliciously, the best we can do is to allow for
mechanisms in the protocol that enables PayString client and server to prove this

16

misbehaviour to third-parties and potentially hold the other party legally accountable for
misbehaving.

2. Ensure that if the PayString server is compromised, an attacker can not swap payment
addresses in the payment account information response and redirect funds to the
attacker controlled payment network and address. Allows the custodial PayString server
to pre-sign ​PaymentInformation in a cold/airgapped system offline instead of online on a
hot wallet.

3. Allows for non-custodial service providers to run non-custodial PayString service by
allowing the PayString owners to digitally sign the ​PaymentInformation locally on their
device with their off-ledger private keys and send PayString owner's “identity”
information in the response. This information can then be used by the PayString client
and sender to authenticate the PayString owner and decide if they want to proceed with
the transaction.

4. Enhance privacy of the PayString protocol by allowing the PayString client to share their
and the sender's “identity” information with the request to the PayString server. This
information could then be used to:

a. Give the PayString owner and/or PayString server the ability to decide if they
want to share their payment address information and other resources with the
PayString client or the sender.

b. Allow for an open standards based way for endpoints to keep verifiable records
of their financial transactions, to better meet the needs of accounting practices or
other reporting and regulatory requirements.

Verifiable PayString protocol flow
Verifiable PayString protocol can be used by PayString clients to easily query PayString servers
for retrieving digitally signed payment address information responses and other resources
corresponding to human-readable PayStrings.

17

The following steps describe how the verifiable PayString client retrieves the signed payment
address(es) corresponding to a PayString. 3

1) POST /payment-setup-details request​: Processing steps by verifiable PayString client

to send an HTTP “POST” request

3 How a client obtains PayString is out-of-scope of this protocol. Instead of a PayString, the client can also
use its corresponding URL directly, as described in the syntax resolution section.

18

a) Establish a secure, mutually authenticated TLS 1.3 session with the PayString

server as described in the ​session establishment section. The URL of the
PayString server is derived from the PayString as described ​here​.

b) If the TLS session is successfully established, prepare an ​InvoiceRequest
message with any optional fields. The optional fields in the message body would
depend on the use-case. E.g. for the simple use-case of a PayString client
meaning to send a transaction to PayString owner, the request body may contain
the

i) “identity”: The type/value of the “identity” field is TBD. We anticipate this
being a mechanism for the PayString client to transmit their or sender's
“identity” information to the PayString server. This information can then be
used by the PayString server/PayString owner to:

● Enhance privacy by exercising access control mechanisms such
as authorized access via accept/deny lists, etc. for the
PaymentInformation or other resources for a PayString.

● Record-Keeping

The PayString client MUST specify the payment-network and environment they support via the
HTTP “Accept” header. They MUST specify the PayString version via “PayString-version”
header. For details on PayString request headers refer to the ​HTTP Request and Response
Headers​.

The PayString client sends the ​InvoiceRequest message using HTTP “POST” method to the
PayString URL with path parameter “payment-setup-details” over the established secure
channel.

2) Payment Address Response​: Processing steps by verifiable PayString server to generate
the Payment Address response corresponding to the queried PayString:

19

a) Receive the POST /payment-setup-details request from PayString client with optional
body.

b) Query its database for the queried PayString. If the Payment Address information
corresponding to the queried payment-network and environment exists in the database,
the PayString server generates the ​PaymentInformation response encapsulated in the
SignatureWrapper with appropriate response headers as described in and ​HTTP
Request and Response Headers section. Otherwise it generates an ​Error message. For
details on error codes refer to the ​PayString protocol status communication​ ​section​.

c) Send PaymentInformation response or Error message generated in the previous step to
the PayString client.

Verifiable PayString protocol as a trustless solution for custodial and
non-custodial service providers
We anticipate that the most common use-case for retrieving “PaymentInformation” is to make
transactions. We can categorize the providers of such services as follows:

● Custodial wallets and exchanges: Custodial wallets and exchanges hold the private keys
of their customers on their servers and essentially hold their funds. There is an implicit
trust between the custodial service provider and their customers.

● Non-Custodial wallets and exchanges: Non-custodial wallets and exchanges do not
store their customers’ keys on their servers. The customers hold their private keys locally
on their device. There is a no trust requirement between the non-custodial wallets and
exchanges and their customers. Since the customers hold the private keys the wallets
are not liable for any consequences coming from the lost, compromised or hacked

20

private keys of the customers. Nor do they need their customers to trust their servers in
case wallet's servers go malicious or are compromised.

Notice that the custodial and non-custodial service providers operate under different trust
models. To continue operating under the same trust model, verifiable PayString requires slightly
different treatment for the two.

Verifiable PayString protocol preserves these trust models. Consequently, a non-custodial
wallet running a PayString server has no liability for providing accurate “PaymentInformation”,
i.e. the “PayString --> Payment Address” mappings, for their customers that is signed with the
private key of the non-custodial PayString server wallet. Instead, the PayString owners or the
customers can generate this signed mapping with their own off-ledger private key locally on
their app/device. The PayString client can easily verify this signature based on the trust
relationship between the sender of the payment (PayString client wallet’s customer) and the
receiver (non-custodial PayString server's wallet). This eliminates any risk of the non-custodial
PayString server wallet losing its private keys, going malicious, getting hacked, or becoming
otherwise compromised in a way that customers might lose funds.

Distributing identity key
There are two general approaches to associating an identity key with a PayString so that
request responses to that PayString can be verified in a trustless manner.

The first approach is to include or point to an identity key in the response itself. This approach
preserves the user-friendly readability of the PayString and provides flexibility to include
metadata that can help interpret the identity key.

The following table enumerates the possible ways to share the public key of PayString owner
using “identity” field.

● Digital identifier/Attested Certificate: A global digital identifier that uniquely associates the

“PayString owner's identity” as defined by the identifier (GiD, Human UUID, DID, etc.) to
the “PayString” and “public key”. The PayString client can then verify the “public key”
using the digital identifier. This could be a direct retrieval of the corresponding “public
key” from a digital identity service provider if PayString is a part of that digital identifier or

21

identity Description

Global Identifier​ (GiD), ​Human Universally Unique
Identifier​ (Human UUID), ​Digital Identifier​ (DID)

Digital identifier or an attested certificate
that associates digital identifier to
PayString and public key

URL URL for secure retrieval of public key of
the PayString owner

Public Key Public key of PayString owner

https://www.global.id/
https://github.com/codetsunami/HumanUUID
https://github.com/codetsunami/HumanUUID
https://www.didalliance.org/

an attested certificate that associates digital identifiers such as GiD, Human UUID, DID,
etc. to the “PayString” and “public key”.

● URL: A URL for secure retrieval of “public key” of the PayString owner.
● Public Key: This could be

○ Public key that has been pre-shared between the PayString client and PayString
owner. E.g. PayString client and PayString owner could use popular messaging
systems such as ​Signal Messaging App/ ​WhatsApp and use their long term
identity keys that are shared between the PayString client and server using
out-of-band public-key fingerprint matching or Trust On First Use (TOFU). The
extensive reach and trust in these apps makes them a good potential solution.

○ Certificates verifying the PayString owner’s centralized web PKI keys,
decentralized PGP​ keys or Blockchain-based PKI keys.

The second approach is to embed the public key of PayString owner in specialized identity
PayStrings that point to other PayStrings.

This approach entails reserving the hostname “pkh” for “public key hashes” and supporting a
PayString format of the form “public_key_hash”$pkh.provider.domain. PayString client
implementations would require that any “PaymentInformation” resource that resulted from the
PayString of that form be signed with the “private key” corresponding to that “public key hash”,
so only a “PaymentInformation” signed by the owner of the PayString is valid.

The caveat is that this PayString format is not human-readable anymore. The solution is simple:
the non-custodial wallets and exchanges would provide a non-human-readable PayString of the
form `public_key_hash`$pkh.provider.domain, but the customers may get a human-readable
PayString from another trusted service providers (say from their email provider) that maps to the
non-human-readable PayString they got from their non-custodial service-provider. Non-custodial
service-providers could even automate this process by allowing the user to choose a mapping
provider.

22

https://signal.org/en/
https://www.whatsapp.com/
https://en.wikipedia.org/wiki/Web_of_trust

Verifiable PayString protocol extensions
In this section, we describe two extensions to the verifiable PayString protocol: one for invoices
and receipts and one for satisfying compliance requirements for payments.

Terminology
Additional terminology used in the following section:

Beneficiary/Receiver/PayString owner: Individual or Entity receiving the transaction/owner of
the PayString
Beneficiary wallet/PayString server: Receiving Endpoint; receives transaction on behalf of the
Beneficiary (custodial or non-custodial)
Originating wallet/PayString client: Sending Endpoint; initiates transaction on behalf of the
Originator (custodial or non-custodial)
Originator/Sender:​ Individual or entity originating the transaction.

Third-party verifiable cryptographically signed proof-of-payment and
receipt-of-payment
The first extension is for the case of making payments to include cryptographically signed
invoice requests, invoice response, proof-of-payment and receipt-of-payment.

23

In case the Originating wallet wants to make a payment with a signed proof of
PaymentInformation from the Beneficiary or the Beneficiary wallet, they would generate an
InvoiceRequest message for the Beneficiary wallet . 4

1) POST /payment-setup-details request​: Processing steps by the Originating wallet to
generate InvoiceRequest message:

4 In this specific flow, we assume that both end-points are non-VASP entities

24

Prerequisite: Receive the Payment Request from the Originator with Beneficiary’s PayString and
other relevant information such as amount, etc. (This is not a part of the PayString protocol
flow.)

a) Establish a secure and mutually authenticated TLS 1.3 session with the
Beneficiary wallet as described in the ​session establishment section. The URL of
the Beneficiary wallet is derived from Beneficiary’s PayString as described ​here​.

b) If the TLS session is successfully established, prepare an ​InvoiceRequest
message encapsulated in ​SignatureWrapper​. The Originating wallet must include
any optional relevant fields that are required to generate an invoice response.

c) Send HTTP “POST” request with path parameter “payment-setup-details” and
InvoiceRequest as message body over the established secure channel.

2) Response​: Processing steps by Beneficiary wallet to generate a Response
corresponding to the InvoiceRequest:

25

a) Receive the InvoiceRequest message from the Originating wallet.
b) Verify if the incoming message has all the mandatory data in valid format and is

correctly signed as described in the ​verifying InvoiceRequest​ message​.
c) If the InvoiceRequest message passes verification, the Beneficiary wallet queries

its PayString server database for the cryptographically signed
‘beneficiaryPayString → payment address’ information corresponding to the
queried PayString and payment-network and environment. This database of
payment information is generated by the Beneficiary wallet as described in the
PaymentInformation​ section.

d) If the payment information corresponding to the queried PayString exists in the
database, then the Beneficiary wallet generates a cryptographically signed
InvoiceResponse message encapsulated in ​SignatureWrapper otherwise it
generates an ​Error message. For details on error codes refer to the ​PayString
protocol status communication section. Send InvoiceResponse or Error message
to the Sending Endpoint.

3) POST /payment-proof [optional]: ​Processing steps by the Originating wallet to
generate the PaymentProof message as a proof of payment on the payment address
provided by the Beneficiary wallet in the InvoiceResponse message:

26

a) Receive InvoiceResponse or Error message from the Beneficiary wallet
b) Verify if the incoming message has all the mandatory data in valid format and is

correctly signed as described in the ​verifying InvoiceResponse message ​or
verifying ​Error​ ​message​ ​section.

i) If it is an Error message and it verifies, exit. If the Error message does not
pass verification, drop the message

ii) Otherwise, if verification for InvoiceResponse message passes, goto (c).
c) Retrieve the payment address from the ​paymentInformation field of the

InvoiceResponse message and post the transaction on the corresponding
address.

d) If the payment succeeds, then obtain the corresponding transaction ID and
generate a cryptographically signed ​PaymentProof message ​encapsulated in
SignatureWrapper​. Otherwise generate an ​Error message. For details on error
codes refer to the generating ​PayString protocol status communication section.
Send POST /payment-proof or Error message to the Beneficiary wallet.

2) PaymentReceipt [optional]: Upon receiving the signed PaymentProof message from

the Originating wallet, the Beneficiary wallet may choose to send a PaymentReceipt
message as a receipt of payment. Following are the processing steps by Beneficiary
wallet to generate PaymentReceipt:

27

a. Receive PaymentProof message or an Error message from the Originating
wallet.

b. Verify if the incoming message has all the mandatory data in valid format and is
correctly signed as described in the ​verifying PaymentProof message ​or ​verifying
Error​ ​message​ ​section.

i. If it is an Error message and it passes verification, exit. Otherwise if the
Error message does not pass verification, then drop the message.

ii. Otherwise if the PaymentProof message passes verification, goto (c).
c. Retrieve the ​transactionConfirmation field from the PaymentProof message and

confirm the transaction on the corresponding payment network.
d. If the payment exists, generate a cryptographically signed ​PaymentReceipt

message. Send PaymentReceipt or Error message response to the Originating
wallet.

Verifiable PayString protocol with compliance extensions
The verifiable PayString allows us to easily extend cryptographically verifiable invoice requests
and responses for financial institutions to use with their array of compliance requirements.

Of particular relevance, increasing regulatory scrutiny has introduced additional compliance and
legal issues for the cryptocurrency industry and more of such regulations are anticipated in the
future. As a result, there is a pressing need to come up with a messaging standard between the
transacting entities that are required to meet such requirements to agree on a mechanism that:

a) Allows the entities to communicate to each other their respective compliance
requirements.

b) Securely send (and store) required information/data if the entities indicate that they fall
under the umbrella of such requirements.

Accordingly, we present an extension to the verifiable PayString protocol that provides a
standard mechanism to meet the current and potential future compliance and legal
requirements along with cryptographic signed proofs that can be stored by both entities involved
in a transaction as a record of their compliance.

The most salient compliance need facing the cryptocurrency space is the Travel Rule, which
requires financial institutions to exchange information on senders and receivers of the covered
transactions. In the US, FinCEN has indicated heightened focus on enforcing the Travel Rule,
while FATF ​recommended in June that the Travel Rule be enforced for Virtual Asset Service
Providers (“VASPs”) starting in mid-2020. 5

While relatively straightforward for traditional payment rails such as wire or ACH, Travel Rule
compliance is non-trivial for VASPs. When a user asks a service to send to an on-ledger
address, it is exceedingly difficult for the VASPs to determine who owns the address, whether
Travel Rule applies, and how to contact the owner of the address if it does. The challenge is to

5 ​https://www.fatf-gafi.org/glossary/u-z/

28

http://www.fatf-gafi.org/media/fatf/documents/recommendations/RBA-VA-VASPs.pdf
https://www.fatf-gafi.org/glossary/u-z/

come up with a lightweight messaging protocol that is both secure and private from third parties
and does not require any trust relationships between the transacting VASPs.

We show how verifiable PayString protocol can easily be extended to accommodate the Travel
Rule that allows the participating entities to indicate to each other if they are a VASP or not and
to send and store the required Travel Rule information. The protocol requires no trust between
the participating entities and is both secure and private from third parties. We provide
non-deniable, publicly verifiable cryptographically signed proofs that can be stored by both
VASPs involved in a transaction as record of their compliance with the Travel Rule. 6

Note: In this paper, we describe PayString protocol flow for Travel Rule compliance specifically
but our protocol can be extended to exchange information for other compliance requirements
with little to no change.

Terminology
Additional terminology in context of Travel rule used in the following sections.

Beneficiary Institution: Receiving Endpoint that is a VASP; receives transaction on behalf of the
Beneficiary.
Covered Institution: Entity that must comply with some set of regulatory requirements.
Covered Transaction: Transaction that is subject to compliance with Travel Rule requirements.
Endpoint: either the client or the server of the connection
Sending Endpoint: sending side of the transaction (VASP or non-VASP)
Receiving Endpoint: receiving side of the transaction (VASP or non-VASP)
Originating Institution: Sending Endpoint that is a VASP; initiates transaction on behalf of the
Originator.

Prerequisite : Before the PayString protocol flow begins, the Originator sends the Payment 7 8

Request that MUST include the Beneficiary’s PayString and transaction details (amount, etc.)
and MUST include any information about the Beneficiary and the Beneficiary Institution (where
applicable) to the Originating Institution over a pre-established secure channel (e.g. through the
service’s web app) 9

6 ​It is up to the user how and for how long they wish to store these proofs and other data artifacts. Per
https://www.law.cornell.edu/cfr/text/31/1010.410​, they can be required to retain records for up to 5 years
in the US.
7 For this following flow, we assume that both endpoints are covered institutions and the transaction is
covered transaction
8 This is not a part of the PayString protocol flow.
9 At this stage i.e. before initiating the protocol flow, based on the information provided by the Originator to
the Originating Institution about the identity of the Beneficiary and/or Beneficiary Institution, the
Originating Institution has the opportunity to run checks such as sanctions screening, blacklists, etc. and
decide if they want to proceed with the transaction. If the Originating Institution decides against, they MAY
optionally inform the Originator of the reason for the failed transaction.

29

https://www.law.cornell.edu/cfr/text/31/1010.410

Verifiable PayString protocol with Travel Rule flow begins here 10

Travel Rule handshake begins here

1) POST /payment-setup-details request​: Processing steps by Originating Institution to
generate InvoiceRequest message for the Beneficiary Institution:

10 In this flow, we describe the case when both endpoints are covered institutions and the transaction
amount is above a threshold that kicks in Travel Rule, i.e. it’s a covered transaction.

30

a) Upon receiving the Payment Request from the Originator, establish a TLS

session with the Receiving Endpoint as described in the ​session establishment
section. The URL of the Receiving Endpoint is derived from Beneficiary’s
PayString as described in the syntax resolution section above.

b) If the TLS session is successfully established, generate the ​InvoiceRequest
message encapsulated in the ​SignatureWrapper​. Since the Originating Institution
is a VASP, they MUST provide their identity information, amount of transaction
and set the ​isVASP field to True in the InvoiceRequest message body.
Additionally, they MAY provide any other relevant information in the “memo” field.

c) Send HTTP “POST” request with path parameter “payment-setup-details” and
InvoiceRequest as message body to the Receiving Endpoint.

2) Response​: Processing steps by the Receiving Endpoint:
a) Receive the InvoiceRequest message from the Originating Institution.
b) Verify if the incoming message has all the mandatory data in valid format and is

correctly signed as described in the ​verifying InvoiceRequest​ message​.
c) If the InvoiceRequest message fails verification, generate an Error message as

described in the generating ​Error​ message section.
d) Otherwise if the Receiving Endpoint is a Beneficiary Institution, the Beneficiary

Institution MAY run checks such as sanctions screening, blacklist checks, etc. on
the Originating Institution based on any identity information received in the
InvoiceRequest and decide if it wants to proceed with the transaction.

i) If it does want to proceed, the Beneficiary Institution queries its database
for the cryptographically signed ‘beneficiaryPayString → payment
address’ information corresponding to the queried PayString and
payment-network and environment. This database of payment information
is generated by the beneficiary wallet as described in the
PaymentInformation section. If the payment information exists in the

31

database, then the Beneficiary Institution generates ​InvoiceResponse
encapsulated in​ ​SignatureWrapper​ that includes

(1) compliance requirement for Travel Rule in the list ​of
complianceRequirements ​field.

(2) its​ ​identity information​ ​to the Originating Institution.
(3) The empty ​paymentInformation field. The Beneficiary Institution

MUST NOT send the payment address information yet.

Otherwise if the payment information does not exist in the
database it generates an ​Error message and exit. For details on
error codes refer to the generating ​PayString protocol status
communication section. Send InvoiceResponse or Error message
to the Originating Institution.

ii) If the Beneficiary Institution decides not to proceed with the transaction, it
MAY generate an ​Error message and exit. For details on error codes refer
to the generating ​PayString protocol status communication section. Send
the Error message to the Originating Institution and MAY optionally inform
the Beneficiary of the failed transaction.

3) POST /payment-setup-details request (upgraded)​: Processing steps by the
Originating Institution:

a) Receive InvoiceResponse or Error message from the Beneficiary Institution.
b) Verify if the incoming message has all the mandatory data in valid format and is

correctly signed as described in the ​verifying InvoiceResponse ​or ​verifying Error
message section.

32

https://docs.google.com/document/d/180dN2NzGXs_Mew9yk1J79KyDH-emncKEs7N-bdf7gaw/edit#heading=h.kmlyiiq5wcoq
https://docs.google.com/document/d/180dN2NzGXs_Mew9yk1J79KyDH-emncKEs7N-bdf7gaw/edit#heading=h.kmlyiiq5wcoq

i) If it is an Error message and it verifies, exit. If the Error message does not
verify, drop the message.

ii) Otherwise, if the InvoiceResponse message passes verification, goto (c).
If verification for InvoiceResponse fails, generate an ​Error message exit.
For details on error codes refer to the generating ​PayString protocol
status communication​ section.

c) The Originating Institution MAY run checks such as sanctions screening,
blacklist, etc. on the Beneficiary Institution based on any identity information
received in the InvoiceResponse and decide if it wants to proceed with the
transaction.

i) If it does want to proceed, the Originating Institution generates a
cryptographically signed upgraded invoice request message with a body
as described in the ​ComplianceData and ​SignatureWrapper sections that
among other fields includes:

(1) Travel Rule data payload that contains the required
data/information to be transferred as described in the ​TravelRule
section.

(2) Previous InvoiceResponse message received from the Beneficiary
Institution in step (2).

Send the upgraded POST /payment-setup-details request message to the Beneficiary
Institution.

4) Response​: Following are the processing steps by the Beneficiary Institution to generate
an upgraded InvoiceResponse message in response to the upgraded InvoiceRequest
from the Originating Institution that contains the Travel Rule payload:

33

a) Receive upgraded invoice request (ComplianceData) message or an Error
message from the Originating Institution.

b) Verify if the incoming message has all the mandatory data in valid format and is
correctly signed as described in the ​verifying ComplianceData ​or ​verifying Error
message sections. If it is an error message and it verifies, exit. If it is a
ComplianceData message and it fails verification, generate an ​Error message
and exit. For details on error codes refer to the generating ​PayString protocol
status communication​ section.

c) Otherwise if the ComplianceData message passes verification,
i) Retrieve the compliance data sent by the Originating Institution in the

ComplianceData message which includes the Originator’s identity
information. The Beneficiary Institution MAY run checks such as
sanctions screening, OFAC, etc. on the Originator and decide if it wants
to proceed with the transaction.

(1) If the Beneficiary Institution decides that it wants to proceed with
the transaction, then the Beneficiary Institution generates an
upgraded InvoiceResponse encapsulated in SignatureWrapper
that includes among other fields:

(a) paymentInformation field containing the cryptographically
signed ‘beneficiaryPayString → payment address’
information corresponding to the queried PayString in the
Payment

(b) empty ​complianceRequirements​ field
(c) previousMessage ​field containing the previous upgraded

invoice request (ComplianceData) message received from
Originating Institution

(d) [optionally] A ​proofOfControlSignture field containing the
signature proving control over the destination address 11

Otherwise if the Beneficiary Institution decides to not proceed with the
transaction, it MAY optionally generate an ​Error message and send it to
Originating Institution and exit. For details on error codes refer to the generating
PayString protocol status communication section. Originating Institution MAY
also optionally inform the Beneficiary of the failed transaction.

Travel Rule handshake ends here.

Optionally perform Steps 3 and 4 as in ​Verifiable PayString protocol Extensions section to
generate proof of payment and receipt of payment.

Verifiable PayString protocol with Travel Rule flow ends here

11 This ensures that the Originating Institution knows they are communicating with the VASP that controls
the on-ledger address.

34

Verifiable PayString protocol integration with Travel Rule
Information Sharing Architecture (TRISA) 12

While PayString can provide a standalone framework to satisfy compliance requirements, its
flexible structure allows it to complement any other solution by providing for easier set up,
enhanced privacy, and an improved user experience.

One PayString extension that is in active development is an integration with TRISA, a Travel
Rule solution for VASPs that facilitates transaction identification exchange between transacting
counterparties without modifying the core blockchain and cryptocurrency protocols. The goal of
the TRISA is to create a separate out-of-band mechanism to augment existing blockchains and
cryptocurrencies for compliance purposes.

Verifiable PayString protocol allows for secure and private out-of-band mechanism to retrieve
payment addresses corresponding to PayString. Integrating PayString protocol into the TRISA
flow enhances the protocol in several aspects:.

1. Determining by Sender if Receiver is a VASP: ​The Risk of Sending Private Information
to the Wrong Entity
PayString accomplishes this in two steps:

a. Allows the Beneficiary VASP to send the signed on-ledger payment address to
the Originating VASP. This proves that the identity who signed this address (i.e.
the Beneficiary VASP) provided this payment address.

b. Allows the Beneficiary VASP to send “proof of control signature” to the
Originating VASP to prove the ownership of the private key corresponding to the
on-ledger payment address.

The above two proofs together tie the ownership of a private key for an on-ledger
address to the identity of the Beneficiary VASP.

2. Determining by Receiver if Sender is a VASP: The problem as stated in the TRISA
paper.
“​A somewhat more complicated problem is how a receiving VASP, who gets an inbound
transaction to one of their addresses, can determine if the inbound transaction is from a
VASP or not. For full compliance if the inbound transaction is from a regulated VASP the
receiving VASP should not make funds available to the beneficiary until the Travel Rule
transaction identity information is received and recorded.​”

This is a challenging problem when sending to a ledger address since the address is not
actively provided by the Beneficiary VASP but rather is by the Originator to the
Originating Institution. From the perspective of the Beneficiary VASP, determining

12 For more details on TRISA, see the ​TRISA White Paper​ or visit ​trisa.io​.

35

https://s32708.pcdn.co/wp-content/uploads/2020/06/Travel-Rule-Info-Sharing-ArchitectureV6.pdf
https://trisa.io/

ownership of the address and any corresponding compliance implications is
cumbersome at best.

When a payment is instead sent to a PayString, the on-ledger payment address to make
the transaction is sent by the Beneficiary VASP and signed with their private key (that
identifies the VASP) ​after​ determining if the sending side is a VASP or not.

A corollary benefit of PayString is that it precludes both false positives and false
negatives, regardless of what combination of VASPs and non-VASPs are involved in a
transaction. That is, a payment to a PayString will definitively determine the
counterparty without ambiguity. This is impossible in a payment to an on-ledger address
unless every VASP participates in the same compliance system.

3. PayString enhances the compliance screening and privacy of TRISA because the

blockchain address to make the payment is only sent by the Beneficiary VASP to the
Originating VASP after

a. Beneficiary VASP and the Originating VASP have verified each other’s identity
and have decided to proceed with the transaction.

b. Each side has received the required Travel Rule information about the Originator
and the Beneficiary.

Below, we describe integration of PayString with TRISA for VASPs flow. The participating
entities i.e. the originating and beneficiary institutions MUST acquire the following three
certificates:

1. Identity Certificates for VASPs with Extended Validation
2. Transactions Signing Certificates for VASPs
3. Web PKI certificate (Non-VASP certs)

The integrated protocol flow begins at the originating VASP as a PayString client. The
prerequisite is Originator issues a Payment Request that contains the Beneficiary’s PayString
and the transaction amount along with the other meta-data to the Originating VASP. The
Originating VASP resolves the PayString URI to VASP’s URL as described in the ​PayString
discovery​ section.

1. The Originating VASP establishes a secure, mutually authenticated TLS 1.3 connection
(non-VASP web PKI certificate) with the receiving endpoint.

2. If the TLS session is successfully established, Originating VASP (PayString client)
generates the ​InvoiceRequest message. The body of the message MUST contain
isVASP ​field set to true to indicate to the receiving endpoint that the sending endpoint is
a VASP. Then it sends an HTTP POST request with path parameter
/payment-setup-details to the receiving endpoint (PayString server)

3. Upon receiving this InvoiceRequest, the receiving endpoint (PayString server) parses the
message body for ​isVASP ​field to check if the sending endpoint is a VASP. The
receiving endpoint (PayString server/beneficiary VASP) generates an ​InvoiceResponse
message encapsulated in the ​SignatureWrapper​ that includes

36

a. “Travel Rule” as a compliance requirement in the list​ ​of ​complianceRequirements
field.

b. A redirect URI to redirect PayString client (Originating VASP) to TRISA server to
initiate the TRISA flow.

c. An empty ​paymentInformation​ field. The Beneficiary VASP MUST NOT send the
payment address information yet.

4. Upon receiving this InvoiceResponse message with a redirect URI, the PayString client
(Originating VASP) forwards the request to the TRISA client. TRISA client initiates a
secure, mutually authenticated TLS connection between VASPs by the Originating
VASP to assure privacy of data in transit using TRISA identity certificate for VASPs.

5. Upon receiving Originating VASP’s TRISA identity certificate, the Beneficiary VASP
verifies the certificate and decides if they want to proceed with the transaction with the
Originating VASP. If they do, they send their TRISA identity certificate to the Originating
VASP.

6. Upon receiving Beneficiary VASP’s TRISA identity certificate, the Originating VASP
verifies the certificate and decides if they want to proceed with the transaction. If they do,
the Originating VASP sends a transaction identification message. The transaction
identification message MUST contain the ​Blockchain​, ​amount ​and ​Travel Rule

information​ as described in the TRISA paper . 13

Note here that there are two changes in the TRISA transaction identification message
here:

a. Originating VASP sends additional ​PayString​ field.
b. Originating VASP does not send the “address” field as described in the TRISA

flow. This is because this transaction identification message is a query for the
Beneficiary VASP for payment address corresponding to the queried ​PayString​,
and ​Blockchain​.

7. Beneficiary VASP sends a signed receipt to the Originating VASP. The receipt MUST
contain the ​Beneficiary’s information and signed ​PaymentInformation ​in PayString format
corresponding to the queried ​PayString​ and ​Blockchain​.

Note here that the response from the Beneficiary VASP includes an additional field
PaymentInformation ​which contains the ​queried payment address corresponding to
PayString.

8. Originating VASP extracts the payment address from ​PaymentInformation and posts the
transaction and receives a transaction ID.

9. Originating VASP posts the transaction ID to the Beneficiary VASP.

For details on message formats for TRISA flow, refer to the TRISA paper 14

13 ​https://s32708.pcdn.co/wp-content/uploads/2020/06/Travel-Rule-Info-Sharing-ArchitectureV6.pdf
14 ​https://s32708.pcdn.co/wp-content/uploads/2020/06/Travel-Rule-Info-Sharing-ArchitectureV6.pdf

37

https://s32708.pcdn.co/wp-content/uploads/2020/06/Travel-Rule-Info-Sharing-ArchitectureV6.pdf
https://s32708.pcdn.co/wp-content/uploads/2020/06/Travel-Rule-Info-Sharing-ArchitectureV6.pdf

Verifiable PayString protocol security model
The security guarantees of Basic PayString protocol apply to verifiable PayString protocol. In
this section we describe additional security guarantees for verifiable PayString protocol.

While the PayString protocol operates between an originating institution and a beneficiary
institution, there are actually four parties to any payment. The other two parties are the
originator whose funds are being transferred and the beneficiary who the originator wishes to
pay.

In the current security model, there is necessarily some existing trust between the originator and
the originating institution. The originating wallet is holding the originator's funds before the
payment is made. Similarly, there is necessarily some existing trust between the beneficiary and

38

the beneficiary institution since the beneficiary has directed that the beneficiary institution
receive their funds.

Verifiable PayString protocol provides stronger security guarantee: The ideal scenario that we
strive for is that the originator should be able to hold the originating institution legally
accountable if the originating institution ​provably mishandles their funds. Similarly, the
beneficiary should be able to hold the beneficiary institution legally accountable if their funds are
mishandled. However, this mechanism requires that it be possible for either wallet to establish
that it acted properly and that the other wallet acted improperly.

Of course, the preferred outcome of any payment is that nothing goes wrong and both the
originator and beneficiary are satisfied that the payment took place as agreed. A less desirable
outcome is that the payment cannot take place for some reason and the originator still has their
money and understands why the payment cannot take place.

While the protocol cannot possibly prevent the originating institution from sending the funds to
the wrong address or the beneficiary wallet from receiving the funds but refusing to release
them to the beneficiary, it is vital that the institutions not be able to plausibly blame each other
for a failure where the originator has been debited but the beneficiary has not been credited.

Accordingly, the security model permits four acceptable outcomes:

1. The payment succeeds, the originator is debited, and the beneficiary is credited.
2. The payment fails, the originator is not debited, and the beneficiary is not credited.
3. The payment fails, the originator is debited, the beneficiary is not credited, the originator

can show that the originating institution did not follow the protocol.
4. The payment fails, the originator is debited, the beneficiary is not credited, the originator

can show the beneficiary that the beneficiary institution did not follow the protocol.

Again, the protocol cannot possibly prevent outcomes 3 or 4 because the originating institution
can always send the money to the wrong address and the beneficiary institution can always
refuse to credit the beneficiary. It is, however, critical that the originating and beneficiary wallets
not need to trust each other to ensure that one of these four outcomes occurs and that they
cannot point blame at each other.

Fully-malicious adversary model for originating and beneficiary institutions
We assume that the originating and beneficiary institution are fully malicious and can actively try
to cheat each other. Our protocol does not require any trust relationship between the originating
and beneficiary institution. In other words, the protocol enforces honest behavior by generating
non-deniable third-party verifiable cryptographically signed proofs of malfeasance or thereby a
lack of it.

Non-repudiation

- First our protocol ensures that the originating and beneficiary institution can not steal
funds from the other side, and if they do then the other party is able to provide a
verifiable cryptographically signed proof of malfeasance to any third party.

39

- Second, our protocol provides proof of compliance for the covered parties.

Non-deniable cryptographic proofs for originating institution:

1) Signed ​InvoiceResponse with the ​nonce field is a proof verifiable by a third party that the
beneficiary wallet generated an invoice response corresponding to the specific invoice
request message sent by the originating institution with the same nonce value.

2) The ​complianceRequirements field in the signed ​InvoiceResponse provides a signed
confirmation of the list of compliance requirements that the beneficiary institution needs
to meet.

3) Signed paymentInformation field in the signed ​InvoiceResponse is a proof verifiable by a
third party that the beneficiary institution provided the corresponding payment address
for a specific beneficiary.
The ​expirationTime field in invoice response makes sure that the originating institution
can not use an old response as a proof to make a future payment (This protects the
beneficiary institution in case there is a change in the payment address)

4) complianceHashes field in signed ​InvoiceResponse (in case the beneficiary institution
received compliance data from originating institution) is a proof for originating institution
that beneficiary wallet acknowledges that originating institution has sent the required
data. (This is useful in cases when the originating institution bears the burden of
compliance as in case of Travel Rule.)

Non-repudiable cryptographic proofs for the beneficiary institution:

1) data in signed invoice request message (​ComplianceData and ​TravelRule​) is a third
party verifiable cryptographic proof that binds the data sent by the originating institution
corresponding to the participating originator and/or beneficiary to meet the compliance
requirements mentioned by the beneficiary wallet.

2) previousMessage (that indicates beneficiary institution’s signed compliance list) field in
the signed ​PaymentProof is a third party verifiable proof for beneficiary institution that
they successfully communicated their requirements to originating institution such that it is
now up to originating institution to fulfill them. This is a proof of compliance.

3) transactionConfirmation and ​previousMessage fields in the signed ​PaymentProof is a
proof for the beneficiary institution that the originating institution made the payment on
the address provided by the beneficiary institution.

Fully compromisable originating and beneficiary wallet servers (hot systems): Adding
another layer of security
We assume that the servers can be physically or remotely compromised by an adversary.
These are the most attractive attack vectors. There is sufficient evidence that hot/always online
systems are more vulnerable.

There are two signing operations that the beneficiary wallet MUST perform to generate
cryptographic proofs.

a. Payment Information that maps beneficiary to payment address, and
b. Invoice response generation and secure communication channel establishment.

40

These two operations have very different security requirements and compromising the
cryptographic keys required for these operations have different security implications.

- High risk impersonation attack to steal funds​: If the beneficiary wallet’s cryptographic
keys used to cryptographically sign Payment Information are compromised, an attacker
may impersonate as the beneficiary wallet and sign malicious mappings (‘beneficiary →
attacker controlled payment address’) to send to the originating wallet. This would lead
to indirection of funds by the originating wallet to the attacker controlled address.
Therefore, it is extremely important to keep these keys safe offline.

- Lower-risk impersonation attacks​: An attacker can never steal funds if only
cryptographic keys used to establish secure network connection between the originating
wallet and beneficiary wallet are compromised. They can, however, maliciously generate
cryptographically signed invoice responses impersonating the beneficiary wallet. They
can also decrypt the messages sent by the originating wallet. This may lead to privacy
violation in case the messages contain sensitive data (e.g. compliance data, etc)

These differing security implications warrant a separation of generating cryptographically signed
proofs and storing the cryptographic keys used to perform these two tasks separately. Some
observations that inform us on how we can deal with this is that:

a) generating the cryptographic signatures on payment information need not be an
online operation. This can be performed offline in a safe cold system with a separate set of
keys, and

b) All other cryptographic operations need to be performed online such as signing
invoice response messages.

Based on these observations, we propose to maintain two separate systems (hot and cold) and
two separate sets of cryptographic keys for the two operations.
We propose that the originating wallet and beneficiary wallet SHOULD follow best practices
described for key management to reduce the attack surface and be more robust. Security is a
requirement and not just an option or a feature, so we strongly recommend implementing the
key management solution described in the next section.

Security model for non-custodial PayString server wallets
In the current security model, non-custodial wallets do not store their customers’ keys on their
servers. The customers hold their private keys on their device. There is a no trust requirement
between the service provided by the non-custodial wallets and the customers of this service.
Since the customers hold the private keys:

● the wallets are not liable for any consequences coming from the lost, compromised or
hacked private keys of the customers.

● the non-custodial wallets do not require their customers to trust their servers in case
wallets servers go malicious or are compromised.

Verifiable PayString protocol preserves this trust model. For the non-custodial PayString server
wallets this means that

41

On the receiving side of the payment (as a PayString server) non-custodial wallets have no
liability on their end for providing “PaymentInformation”, i.e. the “PayString --> Payment
Address” mappings for their customers that is signed with the private key of the non-custodial
PayString server wallet. The PayString owners or the customers can generate this signed
mapping with their own off-ledger private key locally on their app/device. The PayString client
can easily verify this signature based on the trust relationship between the sender of the
payment (PayString client wallet’s customer) and the receiver (non-custodial PayString server's
wallet). The non-custodial PayString server wallet has no role whatsoever. This eliminates any
risk of the non-custodial PayString server wallet having lost their private keys, going malicious or
getting hacked, etc. because if this happens then their customers might lose funds.

Verifiable PayString protocol privacy model
All privacy guarantees in Basic PayString protocol apply to Verifiable PayString protocol and
further addresses some of the privacy issues highlighted in Basic PayString protocol.

Access Control
In case, the PayString servers allow PayString owners to provide a allow/deny list of users who
are authorized to access the specific information the PayString server MUST authenticate the
PayString client. The additional “identity” field in the PayString client query request allows for
this.

42

PayString protocol message types

SignatureWrapper
This message is an encapsulating wrapper for signing PayString protocol messages. It allows
for the generation of cryptographically signed third-party verifiable proofs of the contents of the
messages exchanged between the participating endpoints. We define ​SignatureWrapper as
JSON object with the following name/value pairs.

43

Field name Required/
Optional

Type Description

messageType required string The value of this field describes the
type of contents delivered in the
message field. E.g.
“PaymentInformation”,
“InvoiceRequest”

message required PaymentInformation ||
InvoiceRequest ||
InvoiceResponse ||
PaymentProof ||
PaymentReceipt ||
ComplianceData​ || ​Error

The value of this field is the contents
of the verifiable PayString protocol
message of the type "messageType"
to be signed.

publicKeyType required string The value of this field is the Public
Key Infrastructure (PKI)/identity
system being used to identify the
signing endpoint. e.g.
"X509+SHA512" means an X.509
certificate as described in ​RFC5280
and SHA512 hash algorithm used to
hash the contents of "message" for
signing. This field defaults to empty
string.

publicKeyData required string[] The value of this field is the
PKI-system/identity data used to
identify the signing endpoint who
creates digital signatures over the
hash of the contents of the
“message”. e.g. in the case of X.509
certificates, it may contain one or
more X.509 certificates as a list upto
the root trust certificate. Defaults to
empty.

https://docs.google.com/document/d/1mdgrkg6T0vAXT-9RyHdms5IsvnnlBevSNdJWkyh8bnk/edit#heading=h.2cmdpu1n1l3w
https://docs.google.com/document/d/1mdgrkg6T0vAXT-9RyHdms5IsvnnlBevSNdJWkyh8bnk/edit#heading=h.uyzlhfywayyn
https://docs.google.com/document/d/1mdgrkg6T0vAXT-9RyHdms5IsvnnlBevSNdJWkyh8bnk/edit#heading=h.r21shijt0x2
https://docs.google.com/document/d/1mdgrkg6T0vAXT-9RyHdms5IsvnnlBevSNdJWkyh8bnk/edit#heading=h.xqiy0ixe39p
https://docs.google.com/document/d/1mdgrkg6T0vAXT-9RyHdms5IsvnnlBevSNdJWkyh8bnk/edit#heading=h.t5cyd37u9dkn
https://docs.google.com/document/d/1mdgrkg6T0vAXT-9RyHdms5IsvnnlBevSNdJWkyh8bnk/edit#heading=h.v9c3tr95eofz
https://docs.google.com/document/d/1mdgrkg6T0vAXT-9RyHdms5IsvnnlBevSNdJWkyh8bnk/edit#heading=h.7cse5qukggna
https://tools.ietf.org/html/rfc5280

If this wrapper is present, then it MUST include ​all ​the required fields.

PaymentInformation
This message MUST be encapsulated in the ​SignatureWrapper in case of Verifiable PayString
protocol and its extensions.
This message MUST be signed using the keys as described in the ​Key Management​ section.

44

publicKey required string Contents of the public key. Defaults to
empty.

signature required string The value of this field is the digital
signature over the hash of the
contents of the “message” using the
private key corresponding to the
public key in “publicKey”. This is a
proof that the “message” was signed
by the corresponding private key
holder.

Field name Required/
Optional

Type Description

addresses required Address[] The value of this field is an
array of one or more JSON
objects of type ​addresses

proofOfControlSignature optional ProofOfControlSignature The value of this field is a
JSON object as described in
ProofOfControlSignature​.
This is the digital signature
proving ownership of the
on-ledger address

identity optional string This field may specify any
additional identity
information about the
PayString owner or
PayString server. See here.

payId optional string The value of this field is the
PayID URI in the client
request that identifies the
payment address
information

https://docs.google.com/document/d/1mdgrkg6T0vAXT-9RyHdms5IsvnnlBevSNdJWkyh8bnk/edit#heading=h.5zm0aet1of7
https://docs.google.com/document/d/1mdgrkg6T0vAXT-9RyHdms5IsvnnlBevSNdJWkyh8bnk/edit#heading=h.pqbyanookz3
https://docs.google.com/document/d/1mdgrkg6T0vAXT-9RyHdms5IsvnnlBevSNdJWkyh8bnk/edit#heading=h.pqbyanookz3

PayString is optional. If the PaymentInformation message is encapsulated in the
SignatureWrapper​, ​PayString​ field MUST be set to the receiver’s PayString.

addresses
This is a required field in the ​PaymentInformation​ message.

addressDetails
This is a field in the ​PaymentInformation message. addressDetails for each specific ledger
MUST be registered at PayString.org.

45

memo optional string Specifies additional
metadata corresponding to a
payment

Field name Required/
Optional

Type Description

paymentNetwork required string The value of this field is the payment-network as
specified in the client request's "Accept" header
 (e.g. XRPL)

environment optional string The value of environment as specified in the
client request's "Accept" header
 (e.g. TESTNET)

addressDetailsTy
pe

required string The value of this field is the string
“CryptoAddressDetails” or “ACHAddressDetails”

addressDetails required CryptoA
ddressD
etails ||
ACHAdd
ressDeta
ils

The value of this field is the address information
necessary to send payment on a specific network
as described in ​addressDetails

Address Type Field name Required
/Optional

Type Description

CryptoAddressDetails

address required string On-ledger address

 tag optional string Tagging mechanism used by

https://docs.google.com/document/d/1mdgrkg6T0vAXT-9RyHdms5IsvnnlBevSNdJWkyh8bnk/edit#heading=h.pbfk1k0anp
https://docs.google.com/document/d/1mdgrkg6T0vAXT-9RyHdms5IsvnnlBevSNdJWkyh8bnk/edit#heading=h.pbfk1k0anp
https://docs.google.com/document/d/1mdgrkg6T0vAXT-9RyHdms5IsvnnlBevSNdJWkyh8bnk/edit#heading=h.pbfk1k0anp
https://docs.google.com/document/d/1mdgrkg6T0vAXT-9RyHdms5IsvnnlBevSNdJWkyh8bnk/edit#heading=h.pbfk1k0anp
https://docs.google.com/document/d/1mdgrkg6T0vAXT-9RyHdms5IsvnnlBevSNdJWkyh8bnk/edit#heading=h.pbfk1k0anp
https://docs.google.com/document/d/1mdgrkg6T0vAXT-9RyHdms5IsvnnlBevSNdJWkyh8bnk/edit#heading=h.pbfk1k0anp
https://docs.google.com/document/d/1mdgrkg6T0vAXT-9RyHdms5IsvnnlBevSNdJWkyh8bnk/edit#heading=h.pbfk1k0anp

ProofOfControlSignature
This is an optional field in the ​PaymentInformation​ message.

InvoiceRequest
This message is sent by the Sending Endpoint. This message contains the required information
for the Receiving Endpoint to return the payment setup details. This message is encapsulated in
the ​SignatureWrapper and MUST be signed using the short-term keys as described in the ​Key
Management​ section.

46

some cryptocurrencies to
distinguish accounts contained
within a singular address. E.g
XRP

ACHAddressDetails

accountNumber required string ACH account number

 routingNumber required string ACH routing number

Field name Required/
Optional

Type Description

publicKey required string on-ledger public key of the PayID server

payID required string PayID of the receiver.

hashAlgorithm required string The value of this field is the hash algorithm used
to hash the entire contents of the
“ProofOfControlSignature” message. E.g.
“SHA512”

signature required string The value of this field is the digital signature over
the hash of the entire contents of the
“ProofOfControlSignature” message using the
private key corresponding to the public key in
“publicKey”. This is a proof that the owner of the
private key corresponding to the public key in the
“publicKey” used to sign this message is the
owner of the on-ledger public key in “publicKey”.

Field name Required/
Optional

Type Description

https://docs.google.com/document/d/180dN2NzGXs_Mew9yk1J79KyDH-emncKEs7N-bdf7gaw/edit#heading=h.mhxm1dyc0x6v
https://docs.google.com/document/d/180dN2NzGXs_Mew9yk1J79KyDH-emncKEs7N-bdf7gaw/edit#heading=h.mhxm1dyc0x6v

InvoiceResponse
This message is sent by the Receiving Endpoint in response to the InvoiceRequest message
sent by the Sending Endpoint. This message is encapsulated in the ​SignatureWrapper and
MUST be signed using the short-term keys as described in the ​Key Management​ section.

47

identity optional string TBD

fullLegalName optional string Full legal name of the Sending Endpoint

postalAddress optional string Principal place of Business Address of the
Sending Endpoint

isVASP optional boolean Indicates if the Endpoint is a VASP.

transactionAmount optional integer Amount of intended payment

scale optional integer Orders of magnitude necessary to express one
regular unit of the currency
e.g. a scale of 3 requires an amount of 100 to
equal 1 US dollar

memo optional string Specifies additional metadata

Field name Required
/Optional

Type Description

id required string The value of this field is the UUID as
described in ​RFC 4122

fullLegalName optional string Full legal name of the Receiving Endpoint

postalAddress optional string Principal place of Business Address of the
Receiving Endpoint

isVASP optional boolean Indicates if the Endpoint is a VASP. Defaults
to false

redirectURI optional string A redirect URI for PayString client

transactionAmount optional integer Amount of intended payment

scale optional integer Orders of magnitude necessary to express
one regular unit of the currency
e.g. a scale of 3 requires an amount of 100 to
equal 1 US dollar

https://tools.ietf.org/html/rfc4122

ComplianceData
This is the upgraded invoice request message sent by the Originating Institution to transmit the
required compliance data corresponding to the requirements mentioned in the
complianceRequirements field of the ​InvoiceResponse message by the Beneficiary Institution.
This message is encapsulated inside the ​SignatureWrapper​.

48

expirationTime required integer
(milliseconds
from epoch)

This message is considered void and
payments MUST NOT be made on the
specified address in the ​paymentInformation
field past the specified timestamp

paymentInformation required PaymentInfor
mation

Contains details as to how a payment can be
made to the Beneficiary. Defaults to empty.

complianceRequire
ments

required string[] List of the regulatory requirements that the
Beneficiary must satisfy during the proposed
transaction. Allows the client to send relevant
compliance data corresponding to the data in
this field. e.g ​TravelRule data in case of
Travel rule compliance requirement. Defaults
to empty list

previousMessage required string This is the previous InvoiceRequest message
received from the Sending Endpoint.

memo optional string Specifies additional metadata to a payment

Field name Required/
Optional

Type Description

previousMessage required InvoiceResp
onse

This is the previous ​InvoiceResponse
message corresponding to which this
upgraded invoice request (ComplianceData)
message is generated

type required string Type of the compilanceData field. e.g.
“TraveRule”

data required TravelRule Travel Rule payload

memo optional string Optional data field

TravelRule
This is an example of the kind of data in the ​data field of ComplianceData message. The
following payload conforms to the industry standard for messaging ​ISO 20022 PACS.008
Following is the message format for Travel Rule payload.

49

Field name Required
/Optional

ISO Data Type Description

originator required PartyIdentification135 Field containing some data about the
Originator

userLegalName required Max140Text Legal name of the Originator

userPhysicalAd
dress

required PostalAddress24 Details about the physical address of
the Originator

institutionName required

BranchAndFinancialInstitu
tionIdentification6

Contains Legal title of the Originating
Institution

accountId required CashAccount38 Contains Account ID within
Originating Institution of the Originator

amount required ActiveorHistoricCurrency
AndAmount

Amount of transaction

timestamp required ISODate Date of transaction

beneficiary optional PartyIdentification135 Field containing known data about the
Beneficiary

userLegalName optional Max140Text Legal name of Beneficiary

userPhysicalAd
dress

optional PostalAddress24 Contains Physical address of the
Beneficiary

identification optional CashAccount38 Contains specific identifier of the
Beneficiary

institutionName required

BranchAndFinancialInstitu
tionIdentification6

Contains legal title of the Beneficiary
Institution

accountId optional CashAccount38 Contains Account ID within the
Originating Institution of the

https://www.iso20022.org/iso-20022-message-definitions
https://www.iso20022.org/standardsrepository/type/PartyIdentification135
https://www.iso20022.org/standardsrepository/type/Max140Text
https://www.iso20022.org/standardsrepository/type/PostalAddress24
https://www.iso20022.org/standardsrepository/type/BranchAndFinancialInstitutionIdentification6
https://www.iso20022.org/standardsrepository/type/BranchAndFinancialInstitutionIdentification6
https://www.iso20022.org/standardsrepository/type/CashAccount38
https://www.iso20022.org/standardsrepository/type/ActiveOrHistoricCurrencyAndAmount
https://www.iso20022.org/standardsrepository/type/ActiveOrHistoricCurrencyAndAmount
https://www.iso20022.org/standardsrepository/type/ISODate
https://www.iso20022.org/standardsrepository/type/PartyIdentification135
https://www.iso20022.org/standardsrepository/type/Max140Text
https://www.iso20022.org/standardsrepository/type/PostalAddress24
https://www.iso20022.org/standardsrepository/type/CashAccount38
https://www.iso20022.org/standardsrepository/type/BranchAndFinancialInstitutionIdentification6
https://www.iso20022.org/standardsrepository/type/BranchAndFinancialInstitutionIdentification6
https://www.iso20022.org/standardsrepository/type/CashAccount38

PaymentProof
This message is optionally sent by the Sending Endpoint as a proof of payment on the payment
address sent in the InvoiceResponse message by the Beneficiary Institution.
This message is encapsulated in the ​SignatureWrapper​.

PaymentReceipt
This message is optionally sent by the Beneficiary Institution to the Originating Institution as an
receipt of payment. This message is encapsulated in the ​SignatureWrapper and MUST be
signed using the short-term keys as described in the ​Key Management​ section.

50

Beneficiary

Field name Required
/Optional

Type Description

previousMessage required Invoice
Respo
nse

The InvoiceResponse message that this
PaymentProof is fulfilling

transactionConfirmation required string Evidence of the submitted transaction on the
payment address provided in the
InvoiceResponse message. e.g. for
cryptocurrencies, this would be the transaction
output and for ACH transactions, this would be
the trace number.

memo optional string Specifies additional metadata to a payment

Field name Required/
Optional

Type Description

previousMessage required PaymentProof PaymentProof message that this receipt is
acknowledging

organizationName optional string Name of the Receiving Endpoint

paidAmount optional string Amount paid/transferred by the originating
wallet to the beneficiary wallet

remainingAmount optional string Any remaining amount

transactionStatus optional string The status of transaction. e.g. “complete”,
“pending”, “failed”

Error
This message is used to communicate the PayString protocol level errors. We follow the ​RFC
7807 with the HTTP header Content-type := application/problem+json and the following fields in
the Error message body.

51

scale optional integer Orders of magnitude necessary to express
one regular unit of the currency
e.g. a scale of 3 requires an amount of 100
to equal 1 US dollar

currency optional string Currency in which amount is paid

timestamp required integer
(milliseconds)

Number of seconds since the Unix epoch to
indicate the time when this paymentReceipt
is generated

memo optional string Specifies additional metadata to a payment

Field name Required/
Optional

Type Description

type required string As described in ​RFC 7807​. For further details on the
URIs see ​PayString protocol status communication​.

title required string As described in ​RFC 7807​. For further information on
Title of the error see ​PayString protocol status
communication​.

statusMessage optional string As described in ​RFC 7807​. For further information
about the status of the PayString protocol see
PayString protocol status communication​.

statusCode required integer As described in ​RFC 7807​. For further information on
relevant HTTP status code for the error generated
see ​PayString protocol status communication​.

previousMessage required string This is the message corresponding to which this
Error message is generated.

https://tools.ietf.org/html/rfc7807
https://tools.ietf.org/html/rfc7807
https://tools.ietf.org/html/rfc7807#section-3.1
https://tools.ietf.org/html/rfc7807#section-3.1
https://tools.ietf.org/html/rfc7807#section-3.1
https://tools.ietf.org/html/rfc7807#section-3.1

PayString protocol status communication
The following status codes MUST be communicated in the ​Error message specific to the
corresponding error in the PayString protocol message.

52

Type Title status_message HTTP
status_code

"https://PayString.org/
invoice/address-not-fo
und"

“Payment address
Not Found”

“Payment address does not
exist in the database”

404

"https://PayString.org/
invoice/PayString-not-
found"

“PayString Not
Found”

“PayString does not exist in the
database”

404

"https://PayString.org/
invoice/certificate-req
uired"

“Certificate
Required”

“A certificate is required to
verify the signature”

400

"https://PayString.org/
invoice/certificate-expi
red"

“Certificate
Expired”

“The certificate sent by the
sending endpoint has expired”

400

"https://PayString.org/
invoice/certificate-rev
oked"

“Certificate
Revoked”

“The certificate sent by the
sending endpoint has been
revoked”

400

"https://PayString.org/
invoice/certificate-inva
lid"

“Certificate Invalid” “The certificate sent by the
sending endpoint is invalid”

400

"https://PayString.org/
invoice/signature-inva
lid"

“Signature Invalid” “Could not verify the signature
using the provided ​publicKey​ ”

400

"https://PayString.org/
invoice/invalid-previou
s-message"

“Invalid/Missing
previousMessage”

“​previousMessage ​is invalid or
missing”

400

"https://PayString.org/
invoice/invalid-compli
ance-data"

Invalid/missing/inc
ompletedata

“​data ​is invalid, missing or
incomplete”

400

"https://PayString.org/
invoice/invoice-expire
d"

“Invoice Expired” “The current system time is past
the expiration time on invoice
response”

400

"https://PayString.org/ “Missing/Mismatch “​nonce​ is invalid or missing” 400

Transport layer communication errors
Transport-layer communication errors must be communicated to the party that initiated the
communication via the communication layer's existing error messaging facilities. In the case of
HTTP-over-TLS, this should be done through standard HTTP Status Code messaging (​RFC
7231​)

HTTP request and response headers
PayString protocol defines semantics around the following request and response headers.
Additional headers MAY be defined, but have no unique semantics defined in the PayString
protocol.

Common headers
The following headers are common between the PayString requests and responses.

1. Header Content-Type
PayString requests and responses with a JSON message body MUST have a “Content-Type”
header value of `application-json`.

2. Header Content-Length
As defined in ​RFC 7230​, a request or response SHOULD include a “Content-Length” header
when the message's length can be determined prior to being transferred. PayString protocol
does not add any additional requirements over HTTP for writing Content-Length.

53

invoice/invalid-nonce" nonce”

"https://PayString.org/
invoice/legal-reasons"

“Legal Reasons” “Endpoint sending the message
does not want to proceed with
the transaction due to legal
reasons”

451

"https://PayString.org/
invoice/invalid-proof-o
f-control-signature"

“Missing/Invalid
proof of control
signature”

“​proofOfControlSignature is
invalid or missing”

400

"https://PayString.org/
invoice/invalid-payme
nt-receipt"

“Invalid payment
receipt”

“The payment receipt is invalid” 400

"https://PayString.org/
invoice/invalid-payme
nt-proof"

“Invalid payment
proof ”

“The payment proof is invalid” 400

https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc7230

3. Header PayString-version
Versioning enables clients and servers to evolve independently. PayString protocol defines
semantics for protocol versioning. PayString requests and responses are versioned according
to the PayString-version header.
PayString clients include the PayString-version header in order to specify the maximum
acceptable response version. PayString servers respond with the maximum supported version
that is less than or equal to the requested `major`

PayString-version: major.minor

The PayString client MUST include the PayString version request header field to specify the
version of the PayString protocol used to generate the request.
If present on a request, the PayString server MUST interpret the request according to the rules
defined in the specified version of the PayString protocol or fail the request with an appropriate
error response code.
If not specified in a request, the PayString server MUST fail the request with an appropriate
error code.

Request headers
In addition to common headers, the PayString client MUST specify the following request header.

1. Header Accept
The PayString client’s HTTP “GET” and “POST” requests MUST specify the “Accept” request
header field with at least one of the registered media types defined in this section. The purpose
of this header is to indicate what type of content can be understood in the response. It specifies
the “payment-network” and “environment” of the payment address and its representation format
for which the PayString client wants to receive information. The representation format is always
JSON.

PayString server MUST reject formats that specify unknown or unsupported format parameters.

Accept: application/(payment-network)-(environment)+json

● payment-network is the short string of letters representing the currency. See ​here for a
common list.

● environment should be “mainnet” for live currencies or the appropriate testnet name for
test currencies.

Initially, we propose standards with the headers specific to XRP, ACH and ILP
payment-networks. We also propose one header that may return ALL addresses across all
payment-networks and environments. Other payment networks will be able to establish
standard media types for their networks over time at PayString.org.

54

https://coinmarketcap.com/all/views/all/

ALL

XRP

ACH

ILP

PayString servers MUST reject formats that specify unknown or unsupported format
parameters.

Response headers
In addition to the Common Headers, the PayString server MUST specify the following response
header.

1. Header Cache-Control
PayString server MUST include the “Cache-Control” header with the max-age limit of 0. The
intermediate hops or PayString client MUST not cache the responses.

55

Accept-header Description

application/PayString+json May return addresses for all
payment-networks and environments

Accept-header Description

application/xrpl-mainnet+json Returns XRPL mainnet ​xAddresses​ or
classic addresses

application/xrpl-testnet+json Returns XRPL testnet xAddresses or classic
addresses

application/xrpl-devnet+json Returns XRPL devnet xAddresses or classic
addresses

Accept-header Description

application/ach+json Returns account and routing number

Accept-header Description

application/interledger-mainnet+json Returns mainnet payment pointer to initiate
SPSP request

application/interledger-testnet+json Returns testnet payment pointer to initiate
SPSP request

https://xrpl.org/introduction.html
https://en.wikipedia.org/wiki/Automated_clearing_house
https://interledger.org/
https://xrpaddress.info/

56

Protocol extensibility
1. Payload Extensibility

PayString protocol supports extensibility in the payload, according to the specific format.
Regardless of the format, additional content MUST NOT be present if it needs to be understood
by the receiver in order to correctly interpret the payload according to the specified
PayString-Version header. Thus, clients MUST be prepared to handle or safely ignore any
content not specifically defined in the version of the payload specified by the PayString-version
header.

2. Header Field Extensibility
PayString protocol defines semantics around certain HTTP request and response headers.
Services that support a version of PayString protocol conform to the processing requirements
for the headers defined by this specification for that version.

Individual services MAY define custom headers. These headers MUST NOT begin with
PayString. Custom headers SHOULD be optional when making requests to the service. A
service MUST NOT require the PayString client to understand custom headers to accurately
interpret the response.

3. Format Extensibility
A PayString service MUST support JSON format as described above and MAY support
additional formats response bodies.

57

Acknowledgements
The PayString protocol is part of the Open Payments Coalition, a group of leading payments
companies across traditional finance, FinTech, and blockchain.

Significant support for and development of PayString has been provided by Ripple and RippleX.
We would like to especially recognize the following individuals for their contributions: David
Fuelling, Dino Rodriguez, Doug Purdy, Ethan Beard, Hans Bergren, Keefer Taylor, Mayur
Bhandary, Stephen Gu, Ted Kalaw, Tyler Longwell, and Tyler Storm, Will Liu.

58

Appendix A. PayString protocol message verification

Verifying InvoiceRequest message
Upon receiving an InvoiceRequest message from the Sending Endpoint, the Receiving Endpoint
performs the following verification steps:

a) Verifies the ​publicKey using the ​publicKeyData and verifies the signature on the
message body

If the verification fails, the Beneficiary Institution generates the relevant signed ​Error message
For details on error codes refer to the section ​PayString protocol status communication

Verifying InvoiceResponse message
Upon receiving an InvoiceResponse message from the Receiving Endpoint, the Sending
Endpoint performs the following verification steps:

a) Verifies the ​publicKey using the ​publicKeyData and verifies the signature on the
InvoiceResponse message body

b) If this is an upgraded InvoiceResponse message, verifies the ​publicKey using the
publicKeyData and verifies the signature on ​paymentInformation field (Recall that this
field is signed using a different short-term key)

c) Checks if the time in the ​expirationTime field is less than the current system time of the 15

Originating Institution
All the verification steps MUST pass. The Sending Endpoint proceeds to the next step only if the
previous step passes, otherwise it generates the relevant ​Error message. For details on error
codes refer to the ​PayString protocol status communication​ section.

Verifying ComplianceData message
Upon receiving the upgraded invoice request message i.e. the ComplianceData message from
the Originating Institution, the Receiving Institution performs the following verification steps:

a. Verifies the ​publicKey using the ​publicKeyData and verifies the signature on the
ComplianceData message body.

b. Verifies if the message in the ​previousMessage field matches the InvoiceResponse
message previously sent by the Beneficiary Institution.

All the verification steps MUST pass. The Beneficiary Institution proceeds to the next step only if
the previous step passes, otherwise it generates the relevant ​Error message. For details on
error codes refer to the ​PayString protocol status communication​ section.

15 originating wallets can choose the source of truth for the current time. We assume that most systems
use their system time obtained from network timing protocols such as ​Network Time Protocol​ (NTP) and
likes. For details on security issues related to using NTP, etc. refer ​Attacking the Network Time Protocol

59

https://tools.ietf.org/html/rfc5905
https://www.ndss-symposium.org/wp-content/uploads/2017/09/attacking-network-time-protocol.pdf

Verifying PaymentProof message
Upon receiving the PaymentProof message from the Sending Endpoint, the Receiving Endpoint
performs the following verification steps:

a. Verifies the ​publicKey using the ​publicKeyData and verifies the signature on the
message body.

b. Verifies if the message in the ​previousMessage field matches the InvoiceResponse
message previously sent by the Receiving Endpoint.

Verifying PaymentReceipt message
Upon receiving the PaymentReceipt message from the Receiving Endpoint, the Receiving
Endpoint performs the following verification steps:

a. Verifies the ​publicKey using the ​publicKeyData and verifies the signature on the
message body.

b. Verifies if the message in the ​previousMessage field matches the InvoiceResponse
message previously sent by the Receiving Endpoint.

Verifying Error message
The Endpoint that receives the Error message performs the following verification steps:

a. Verifies if the message in the ​previousMessage field matches the message previously
sent by them.

If the verification step fails, it drops the Error message.

Session establishment
We recommend ​RFC 8446 for TLS 1.3 session establishment. Each side MUST use ECDHE
(Diffie-Hellman over elliptic curve) key exchange mode. Each side should use the short-term
key-pair as described in the ​Key Management​ ​section for TLS handshake.

60

https://tools.ietf.org/html/rfc8446
https://docs.google.com/document/d/180dN2NzGXs_Mew9yk1J79KyDH-emncKEs7N-bdf7gaw/edit#heading=h.mhxm1dyc0x6v

Appendix B. Key management
In this section we describe the key hierarchy for signing ​PaymentInformation​, ​InvoiceRequest​,
InvoiceResponse​, ​ComplianceData​, ​PaymentProof​, and ​PaymentReceipt messages. This is a
one-time key-generation set-up performed by each institution before the protocol is run. Note
that each institution can be the Originating and Beneficiary Institution in different instantiations
of the protocol. We lay down the requirements for different roles.

Long-term elliptic-curve(EC) key-pair generation
Each institution generates a long-term Elliptic Curve (EC) public/private key pair MPK/MSK and
obtains a corresponding valid X.509 certificate. We call the public and private keys
corresponding to Originating and Beneficiary Institutions as MPK​o​/MSK​o​ and MPK​b​/MSK​b​.

Parameter generation
Each institution chooses a set of domain parameters that include a base field prime p, an elliptic
curve E/F​p​, and a base point G of order n on E. An elliptic-curve key pair (d, Q) consists of a
private key d, which is a randomly selected non-zero integer modulo the group order n, and a
public key Q = dG, the d-multiple of the base point G. Thus the point Q is a randomly selected
point in the group generated by G.

Short-term EC key-pair generation (Receiving Endpoint/Beneficiary
Institution)

1) On a cold system, generate a short-term EC public/private key-pair. We call it SKP1​b​,
where public key = PK1​b and private key = SK1​b​. Generate an X.509 certificate for PK1​b
signed with MSK​b​. This key-pair is needed for secure TLS ​session establishment and for
signing ​InvoiceResponse​ and ​PaymentReceipt​ messages

2) On a cold system, generate another short-term EC public/private key-pair. We call it
SKP2​b​, where public key = PK2​b and private key = SK2​b​. Generate an X.509 certificate
for PK2​b​ signed with MSK​b​. SK2​b​ is used to sign ​PaymentInformation​ mappings.

3) On a hot system, save the following:
a) database of signed ​PaymentInformation​ mappings in PayString server,
b) X.509 certificate for PK1​b​ ,
c) X.509 certificate for PK2​b​ ,
d) SK1​b​,
e) X.509 certificate of MPK​b

4) Store the MSK​b​ offline in a safe vault.

61

Short-term EC key-pair generation (Sending Endpoint/Originating Institution
)

1) On a cold system, generate short-term EC public/private key-pair. We call it SKP1​o​,
where public key = PK1​o and private key = SK1​o​. Generate an X.509 signed certificate
for PK1​o with MSK​o​. This key-pair is needed for secure TLS ​session establishment and
for signing ​InvoiceRequest​, ​ComplianceData​, and ​PaymentProof​ messages.

2) On a hot system, save the following:
a) X.509 signed certificate of PK1​o​ ,
b) SK1​o​,
c) X.509 certificate of MPK​o

3) Store the MSK​o​ offline in a safe vault.

Key Rotation: ​Short-term keys SHOULD be rotated periodically as a general good key
management practice. Public keys required for signature verification must be included in the
corresponding signed messages every time the protocol is run. This provides flexibility to
periodically rotate the keys without worrying about key-updates and also makes each message
self-contained. Our protocol does not require caching of keys or payment addresses, so
key-update is not a concern.

Cryptography choices
We recommend using elliptic-curve cryptography because:

a) ECC provides greater security for a given key-size
b) Better performance: The smaller key size also makes possible much more compact

implementations for a given level of security. This means faster cryptographic
operations. ECC has very fast key generation and signature algorithms.

c) There are good protocols for authenticated key-exchange.
d) Efficient implementations: There are extremely efficient, compact hardware

implementations available for ECC exponentiation operations, offering potential
reductions in implementation footprint even beyond those due to the smaller key length
alone.

62

Appendix C. Additional security considerations

Warning on X.509 certificates
There are various types of SSL certificates available. We warn the implementations to use
certificates that require rigorous validation process for issuance. This is important to leverage
the security guarantees provided by the “key separation” security model above. Below we
highlight the security scenarios for different kinds of web certificates in case an attacker is able
to compromise the online server of either endpoint.

1. Domain Validated (DV) certificates may not provide the same level of security in case
the online server of the endpoint is compromised. This is because the validation process
to obtain a DV certificate ​requires the lowest level of authentication to prove
domain ownership. If an attacker can break into the server, they may be able to
impersonate as domain owner and pass the most commonly deployed validation
checks to prove domain ownership by CAs. An attacker can thus easily get a
new DV certificate issued for the attacked domain with the new MPK/MSK pair,
which they can then use to generate new short-term keys and certificates.

2. Organization Validation (OV) certificate may provide better security in our security
model. The validation process to obtain an OV certificate requires vetting of the
individual and/or organization by CAs in addition to validating the domain ownership.
Thus, obtaining an OV certificate for a domain is relatively harder even if an attacker can
get hold of all the resources on the attacked server.

3. Extended-validation (EV) certificates are considered to be most secure as they require
even more rigorous validation checks. The validation process to obtain an EV certificate
requires much more rigorous identity checks on individuals and organizations in addition
to domain ownership validation. Thus, obtaining an EV certificate for a domain is
relatively harder because feven if an attacker can get hold of all the resources on the
attacked server.

We, therefore, strongly recommend

1. The Endpoints to use high-assurance EV or OV certificates for their long-term keys.
2. The Endpoints validating the certificates to be wary while accepting low-assurance DV

certificates.

63

